观察下列各式,1/1*2=1-1/2 1/2*3=1/2-1/3,1/3*4=1/3-1/4
(1)计算1/1*2+1/2*3+1/3*4+1/4*5+1/5*6=(2)探究1/1*2+1/2*3+1/3*4+...+1/n(n+1)=(用含有n的式子表示)(3)...
(1)计算1/1*2+1/2*3+1/3*4+1/4*5+1/5*6=
(2)探究1/1*2+1/2*3+1/3*4+...+1/n(n+1)= (用含有n的式子表示)
(3)若1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35,求n的值 展开
(2)探究1/1*2+1/2*3+1/3*4+...+1/n(n+1)= (用含有n的式子表示)
(3)若1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35,求n的值 展开
2个回答
展开全部
1/1*2+1/2*3+1/3*4+1/4*5+1/5*6
=1-1/2+1/2-1/3+1/3-1/4+..._1/5-1/6
=1-1/6
=5/6
1/1*2+1/2*3+1/3*4+...+1/n(n+1)=
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35
(1/2)[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]=17/35
1-1/(2n+1)=34/35
2n+1=35
n=17
=1-1/2+1/2-1/3+1/3-1/4+..._1/5-1/6
=1-1/6
=5/6
1/1*2+1/2*3+1/3*4+...+1/n(n+1)=
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35
(1/2)[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]=17/35
1-1/(2n+1)=34/35
2n+1=35
n=17
展开全部
1/1*2+1/2*3+1/3*4+1/4*5+1/5*6
=1-1/2+1/2-1/3+1/3-1/4+..._1/5-1/6
=1-1/6
=5/6
1/1*2+1/2*3+1/3*4+...+1/n(n+1)=
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35
(1/2)[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]=17/35
1-1/(2n+1)=34/35
2n+1=35
n=17
=1-1/2+1/2-1/3+1/3-1/4+..._1/5-1/6
=1-1/6
=5/6
1/1*2+1/2*3+1/3*4+...+1/n(n+1)=
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/1*3+1/3*5+1/5*7+...+1/(2n-1)(2n+1)的值为17/35
(1/2)[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]=17/35
1-1/(2n+1)=34/35
2n+1=35
n=17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询