展开全部
已知sin(π-α)-cos(π+α)=(√2)/3 (π/2<α<π);求 sin³(5π-α)+cos(6π-α)=?
解:sin(π-α)-cos(π+α)=sinα+cosα=(√2)sin(α+π/4)=(√2)/3
故sin(α+π/4)=1/3,α+(π/4)=π-arcsin(1/3),α=(3π/4)-arcsin(1/3)
于是得sinα=sin[(3π/4)-arcsin(1/3)]=sin(3π/4)cosarcsin(1/3)-cos(3π/4)sinarcsin(1/3)
=(√2/2)√(1-1/9)+(√2/2)(1/3)=2/3+(√2)/6
cosα=(√2)/3-sinα=(√2)/3-[2/3+(√2)/6]=(√2)/6-(2/3)
∴sin³(5π-α)+cos(6π-α)=sin³[4π+(π-α)]+cosα=sin³(π-α)+cosα=sin³α+cosα
=[2/3+(√2)/6]³+[(√2)/6-(2/3)]=-7/27+(43√2)/108=(-28+43√2)/108
解:sin(π-α)-cos(π+α)=sinα+cosα=(√2)sin(α+π/4)=(√2)/3
故sin(α+π/4)=1/3,α+(π/4)=π-arcsin(1/3),α=(3π/4)-arcsin(1/3)
于是得sinα=sin[(3π/4)-arcsin(1/3)]=sin(3π/4)cosarcsin(1/3)-cos(3π/4)sinarcsin(1/3)
=(√2/2)√(1-1/9)+(√2/2)(1/3)=2/3+(√2)/6
cosα=(√2)/3-sinα=(√2)/3-[2/3+(√2)/6]=(√2)/6-(2/3)
∴sin³(5π-α)+cos(6π-α)=sin³[4π+(π-α)]+cosα=sin³(π-α)+cosα=sin³α+cosα
=[2/3+(√2)/6]³+[(√2)/6-(2/3)]=-7/27+(43√2)/108=(-28+43√2)/108
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询