子集个数是2的n次方怎么证明?

 我来答
帐号已注销
2021-05-01 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:163万
展开全部

对每个子集而言,全集中的每个元素都有两种选择:在这个子集中或者不在,所以总共有8的n次方个子集,但是其中有一个是空集,所以是8的n次方-8。

方法一:含有N个元素的集合的每一个元素有“在某一子集中”和“不在某一子集中”两种情况,即都有2种可能,故子集的个数=2×2×2....×2(一共N个2)=二的N次方

方法二:含有N个元素的集合的子集中没有元素的子集有C(N,0)个,

含有一个元素的子集有C(N,1)个,

含有两个元素的子集有C(N,2)个,

含有三个元素的子集有C(N,3)个,

含有N个元素的子集有C(N,N)个,

共有C(N,1)+C(N,2)+C(N,3)+........+C(N,N)=二的N次方

(由二项式系数性质得到)

几何上可以理解为:

所以对于相邻两数的二次方的差计算的一般公式如下:

(A+1)^2-A^2=(A+1)^(2-1)*A^(2-2)+(A+1)^(2-2)*A^(2-1)

对于最外边白色框与里边绿色框的平方差,可通过图形看到

(A+1)^2-(A-1)^2=(A+1)^(2-1)* (A-1)^(2-2)*2+(A+1)^(2-2)*(A-1)^(2-1)*2

=[(A+1)^(2-1)* (A-1)^(2-2)+(A+1)^(2-2)*(A-1)^(2-1)]*2

长方向的A+1与[(A+1)-(A-1)]=2的面积、宽方向上A-1与[(A+1)-(A-1)]=2的面积,两块面积的和。

同理,推广到两个不相邻数P与Q的平方差,可表示为:

P^2-Q^2=[P^(2-1)*Q^(2-2)+P^(2-2)*Q^(2-1)]*(P-Q)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式