|已知|ab-2|与(b-1)2互为相反数,试求式子1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2008)(b+2008)的值。
1个回答
展开全部
|ab-2|与(b-1)2互为相反数
ab-2=0
b-1=0
b=1
a=2
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2008)(b+2008)
=-1/a+1/b-1/(a+1)+1/(b+1)-...-1/(a+2008)+1/(b+2008)
=-[1/a+1/a+1+........+1/a+2008]+1/b+1/(b+1)+.........+1/(b+2008)
=-1/2-1/3-...-1/2010+1/1+1/2+....+1/2009
=1-1/2010
=2009/2010
ab-2=0
b-1=0
b=1
a=2
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2008)(b+2008)
=-1/a+1/b-1/(a+1)+1/(b+1)-...-1/(a+2008)+1/(b+2008)
=-[1/a+1/a+1+........+1/a+2008]+1/b+1/(b+1)+.........+1/(b+2008)
=-1/2-1/3-...-1/2010+1/1+1/2+....+1/2009
=1-1/2010
=2009/2010
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询