一道高二数学圆锥曲线的题

已知三角形P1OP2的面积为27/4,向量P1P=2向量PP2,求以直线OP1,OP2为渐近线且过点P的离心率为(跟号13)/2的双曲线方程... 已知三角形P1OP2的面积为27/4,向量P1P=2向量PP2,求以直线OP1,OP2为渐近线且过点P的离心率为(跟号13)/2的双曲线方程 展开
明明痛苦笑着
2012-02-11
知道答主
回答量:4
采纳率:0%
帮助的人:3.3万
展开全部
e=根号13/2
=>
b^2/a^2=9/4
=>两渐进线为
y=1.5x
y=-1.5x

|OP1|=a |OP2|=b
2*S三角形=absin∠P1OP2
而tan(∠P1OP2/2)=2/3
sin∠P1OP2=12/13
ab=117/2
a=|x1|*根号13/2
所以
|x1*x2|=18
设P(x3,y3)
p1p/pp2=2,
=>
x3=2x2-x1
y3=2y2-y1

(2x2-x1)^2/4-(2y2-y1)^2/9=k
=>
-2x1*x2=k
k=36
x^2/144-y^/324=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式