∫(x^5+x^4-8)/x^3-x dx求不定积分具体过程
1个回答
展开全部
∫(x^5+x^4-8)/(x^3-x)dx
=S(x^5-x^3+x^4-x^2+x^3-x+x^2-1+x-1-6)(x^3-x)dx
=S(x^2+x+1+1/x+1/x(x+1)-6/(x^3-x))dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x))-6S1/(x^3-x)dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x)-3S(1/(x-1)-2/x+1/(x+1))dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x)-3ln(x-1)+6lnx-3ln(x+1)+c
=1/3*x^3+1/2*x^2+x+8lnx-4ln(1+x)-3ln(x-1)+c
=S(x^5-x^3+x^4-x^2+x^3-x+x^2-1+x-1-6)(x^3-x)dx
=S(x^2+x+1+1/x+1/x(x+1)-6/(x^3-x))dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x))-6S1/(x^3-x)dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x)-3S(1/(x-1)-2/x+1/(x+1))dx
=1/3*x^3+1/2*x^2+x+lnx+ln(x/(1+x)-3ln(x-1)+6lnx-3ln(x+1)+c
=1/3*x^3+1/2*x^2+x+8lnx-4ln(1+x)-3ln(x-1)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询