∫上限0下限-1+2x㏑(x+2)dx?
2个回答
展开全部
∫(上限0下限-1) 2x㏑(x+2)dx = ∫(上限0下限-1) ㏑(x+2)d(x^2)
= [x^2ln(x+2)](上限0下限-1) - ∫(上限0下限-1) [x^2/(x+2)]dx
= 0 - ∫(上限0下限-1) [x^2+2x-2x-4+4)/(x+2)]dx
= - ∫(上限0下限-1) [x-2 +4/(x+2)]dx
= - [x^2/2 - 2x + 4ln(x+2)](上限0下限-1)
= - 4ln2 + 1/2 + 2
= 5/2 - 4ln2
= [x^2ln(x+2)](上限0下限-1) - ∫(上限0下限-1) [x^2/(x+2)]dx
= 0 - ∫(上限0下限-1) [x^2+2x-2x-4+4)/(x+2)]dx
= - ∫(上限0下限-1) [x-2 +4/(x+2)]dx
= - [x^2/2 - 2x + 4ln(x+2)](上限0下限-1)
= - 4ln2 + 1/2 + 2
= 5/2 - 4ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询