如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接...
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号) 展开
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号) 展开
6个回答
展开全部
解:(1)连结EC
∵点C是劣弧AB上的中点
∴弧BC=弧CA
∴∠BEC=∠CEA
又∵AC=CD
∴△DEA为等腰△
∴EC⊥AD(等腰三线合一)
∴∠ECA=90°
∴AE是圆O直径(直径所对圆周角为90°)
(2)∵圆O半径为5
∴AE=10
∵AC=4
∴皮洞贺EC=2根号21(勾股燃派定理)
∴S△ACE=1/2x4x2根号21=4根号21
∵S圆=πr²=25π S半颤旁圆=25/2π
∴S阴影=S圆-S半圆-S△ACE=25/2π-4根号21
答:......
∵点C是劣弧AB上的中点
∴弧BC=弧CA
∴∠BEC=∠CEA
又∵AC=CD
∴△DEA为等腰△
∴EC⊥AD(等腰三线合一)
∴∠ECA=90°
∴AE是圆O直径(直径所对圆周角为90°)
(2)∵圆O半径为5
∴AE=10
∵AC=4
∴皮洞贺EC=2根号21(勾股燃派定理)
∴S△ACE=1/2x4x2根号21=4根号21
∵S圆=πr²=25π S半颤旁圆=25/2π
∴S阴影=S圆-S半圆-S△ACE=25/2π-4根号21
答:......
展开全部
(1)证明:连接CB,AB,CE,
∵点C为劣弧AB上段亩的中点,汪燃轿
∴CB=CA,
又∵CD=CA,
∴AC=CD=BC,
∴∠ABC=∠BAC,∠DBC=∠D,
∴∠ABD=90°,
∴∠ABE=90°,
即弧AmE的度数是180°,
∴AE是⊙O的直径;
(2)解:∵AE是⊙O的直径,
∴∠ACE=90°,
∵AE=10,AC=4,
∴根据勾股定理得:CE=2根号困肆21
,∴S阴影=S半圆-S△ACE=12.5π-1/2×4×2根号 21
=12.5π-4根号 21
∵点C为劣弧AB上段亩的中点,汪燃轿
∴CB=CA,
又∵CD=CA,
∴AC=CD=BC,
∴∠ABC=∠BAC,∠DBC=∠D,
∴∠ABD=90°,
∴∠ABE=90°,
即弧AmE的度数是180°,
∴AE是⊙O的直径;
(2)解:∵AE是⊙O的直径,
∴∠ACE=90°,
∵AE=10,AC=4,
∴根据勾股定理得:CE=2根号困肆21
,∴S阴影=S半圆-S△ACE=12.5π-1/2×4×2根号 21
=12.5π-4根号 21
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过C做CF垂直AB,
F为AB中点
CD=CA
所以CF平行BD
BD垂直碧没启AB
即察念BE垂直AB
所以AE是直径 2压根不知道阴影悔如是啥
F为AB中点
CD=CA
所以CF平行BD
BD垂直碧没启AB
即察念BE垂直AB
所以AE是直径 2压根不知道阴影悔如是啥
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)图略,连接AB,由弧锋谨AC=弧BC得到,则AC=CB,又因为CD=银稿基AC,所以CB=CD,再利敬如用等边对等角,可得角ABD=90度,则AE是⊙O的直径。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
∵c为弧ab的中点
∴弧ac=弧bc
∴ac=bc(等弧对等弦)
∵cd=ac
∴cd=告信弊bc
∴∠d=∠cbd
∵四边形aebc内接于圆o
∴∠cae=袜族∠cbd(圆内接四边形的外角等于对角)
∴cae=坦侍∠d
∴ae=de
∵c为弧ab的中点
∴弧ac=弧bc
∴ac=bc(等弧对等弦)
∵cd=ac
∴cd=告信弊bc
∴∠d=∠cbd
∵四边形aebc内接于圆o
∴∠cae=袜族∠cbd(圆内接四边形的外角等于对角)
∴cae=坦侍∠d
∴ae=de
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询