计算:1+2+2^2+2^3+…+2^2014,的末位数字是
展开全部
1+2+2^2+2^3+…+2^2014
=2^2015-1
2^2015=32^4032^403(个位数)=(32^80)*8(2^80)*8(个位数)
=(32^16)*8(2^16)*8(个位数)=(32^3)*2*8(2^3)*2*8(个位数)
=32*42*4(个位数)=8
∴2^2015-1的个位数是7
∴1+2+2^2+2^3+…+2^2014,的末位数字是7
(等价符号)
=2^2015-1
2^2015=32^4032^403(个位数)=(32^80)*8(2^80)*8(个位数)
=(32^16)*8(2^16)*8(个位数)=(32^3)*2*8(2^3)*2*8(个位数)
=32*42*4(个位数)=8
∴2^2015-1的个位数是7
∴1+2+2^2+2^3+…+2^2014,的末位数字是7
(等价符号)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询