怎样用方程的方法消元?
将两个圆的方程相减,就消掉了x²,y²项,剩下一个关于x, y的一次方程,可解得y=kx+b。
再用代入法,将y=kx+b代入其中一个圆的方程,就得到关于x的一元二次方程,解得x。
从而由y=kx+b得到y。
圆的一般方程为 x^2+y^2+Dx+Ey+F=0 (D^2+E^2-4F>0),或可以表示为(X+D/2)^2+(Y+E/2)^2=(D2+E2-4F)/4
圆半径的长度定出圆周的大小,圆心的位置确定圆在平面上的位置。如果已知:(1)圆半径长R;(2)中心A的坐标(a,b),则圆的大小及其在平面上关于坐标轴的位置就已确定。根据图形的几何尺寸与坐标的联系可以得出圆的标准方程。
扩展资料
关于圆的定理有:
1、切线定理
垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
2、切线长定理
从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
3、切割线定理
圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB
设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB
4、割线定理
从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。
5、垂弦定理
垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
6、弦切角定理
弦切角等于对应的圆周角。(弦切角就是切线与弦所夹的角)