微分方程(1+x^2)dy+2xydx=0的通解是
1个回答
展开全部
(1+x^2)dy+2xydx=0
(1+x^2)dy=-2xydx
1/y*dy=-2x/(1+x^2)*dx
两边同时积分得
∫1/y*dy=∫-2x/(1+x^2)*dx
ln|y|=-ln|1+x^2|+ln|c|
y=c/(1+x^2)
或
(1+x^2)y=c
(1+x^2)dy=-2xydx
1/y*dy=-2x/(1+x^2)*dx
两边同时积分得
∫1/y*dy=∫-2x/(1+x^2)*dx
ln|y|=-ln|1+x^2|+ln|c|
y=c/(1+x^2)
或
(1+x^2)y=c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询