已知x>0,y>0,x+y=1, 则x^2/(x+2)+y^2/(y+1)的最小值为
展开全部
因为 x y=1,(x 2) (y 1)=4
那么x^2/(x 2) y^2/(y 1)
=[(x 2)-2]^2/(x 2) [(y 1)-1]^2/(y 1)
=[(x 2)^2-4(x 2) 4]/(x 2) [(y 1)^2-2(y 1) 1]/(y 1)
=(x 2)-4 4/(x 2) (y 1)-2 1/(y 1)
=(x y-3) 4/(x 2) 1/(y 1)
=-2 [(x 2) (y 1)]/(x 2) [(x 2) (y 1)]/[4(y 1)]
=-2 1 1/4 (y 1)/(x 2) (x 2)/[4(y 1)]
=-3/4 (y 1)/(x 2) (x 2)/[4(y 1)]
∵(y 1)/(x 2) (x 2)/[4(y 1)]≥2√(1/4)=1
当且仅当(y 1)/(x 2)=(x 2)/[4(y 1)]
即x 2=2(y 1)
x=2/3,y=1/3时取等号
∴x^2/(x 2) y^2/(y 1)≥1/4
即最小值为1/4
那么x^2/(x 2) y^2/(y 1)
=[(x 2)-2]^2/(x 2) [(y 1)-1]^2/(y 1)
=[(x 2)^2-4(x 2) 4]/(x 2) [(y 1)^2-2(y 1) 1]/(y 1)
=(x 2)-4 4/(x 2) (y 1)-2 1/(y 1)
=(x y-3) 4/(x 2) 1/(y 1)
=-2 [(x 2) (y 1)]/(x 2) [(x 2) (y 1)]/[4(y 1)]
=-2 1 1/4 (y 1)/(x 2) (x 2)/[4(y 1)]
=-3/4 (y 1)/(x 2) (x 2)/[4(y 1)]
∵(y 1)/(x 2) (x 2)/[4(y 1)]≥2√(1/4)=1
当且仅当(y 1)/(x 2)=(x 2)/[4(y 1)]
即x 2=2(y 1)
x=2/3,y=1/3时取等号
∴x^2/(x 2) y^2/(y 1)≥1/4
即最小值为1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询