求∫arcsinxdx的不定积分

 我来答
茹翊神谕者

2023-08-02 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1596万
展开全部

简单分析一下,详情如图所示

勿忘心安QS
2022-10-20 · TA获得超过2022个赞
知道小有建树答主
回答量:450
采纳率:100%
帮助的人:12.9万
展开全部
使用分部积分法

∫arcsinxdx

=∫arcsinx(x)'dx

=xarcsinx-∫xd(arcsinx)

=xarcsinx-∫x/√(1-x^2)dx

=xarcsinx+∫(1-x^2)'/√(1-x^2)dx

=xarcsinx+∫1/√(1-x^2)d(1-x^2)

=xarcsinx+2√(1-x^2)+C
分部积分法.

设u=u(x),v=v(x)有连续的导数,由(uv)'=u'v+uv',得uv'=(uv)'-u'v两边积分,

向左转|向右转

式①称为分部积分公式,使用分部积分公式求不定积分的方法称为分部积分法.

利用分部积分公式解题的关键是如何恰当的选取,选取原则是:

(1)要容易求出.

(2)要比原积分易求得.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式