已知椭圆c x^2/a^2+y^2=1(a>1)得上顶点为A,左右焦点分别为F1,F2,直线AF2与圆M x^2+y^2-6x-2y+7=0相切

(1)求椭圆C的方程(2)若椭圆内存在动点P,使/PF1/、/PO/、/PF2/成等比数列,求向量PF1乘PF2的取值范围给我具体过程,10分呢,我让你盖楼,不要给我搭窝... (1)求椭圆C的方程
(2)若椭圆内存在动点P,使/PF1/、/PO/、/PF2/成等比数列,求向量PF1乘PF2的取值范围
给我具体过程,10分呢,我让你盖楼,不要给我搭窝棚,思路我会,但不会算
展开
anonymous101
2012-02-13 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3283
采纳率:66%
帮助的人:3139万
展开全部
AC*F1F2=0,AF1⊥F1F2,
9AF1*AF2=AF1^2,为方便起见,记|AF1|=r,|AF2|=s,而|F1F2|=2c
即9rscosA=r^2
所以cosA=r/(9s)
由直角三角形可得
cosA=s/r,所以r=3s,及4c^2+s^2=r^2,于是4c^2=8s^2,c^2=2s^2
2a=r+s=4s,a=2s又a^2-c^2=1,即4s^2-2s^2=1,s^2=1/2
a^2=2,
椭圆方程为x^2/2+y^2=1

由条件可知,圆与椭圆在上顶点处外切
|EF|=2,
PE*PF=|PE||PF|cos∠EPF=(|PE|^2+|PF|^2-|EF|^2)/2
记圆心为C,则PC为三角形PEF的边EF上的中线,于是
4|PC|^2+|EF|^2=2(|PE|^2+|PF|^2)
即|PE|^2+|PF|^2=|EF|^2/2+2|PC|^2
PE*PF=2|PC|^2-|EF|^2/2=2|PC|^2-2
所以只需求|PC|的最大值
为此,我们考虑圆x^2+(y-2)^2=9与椭圆的位置关系,
联立椭圆方程可解得y仅有-1一个解,
这说明椭圆的下顶点到C的距离最远,
即|PC|的最大值为3,
所以PE*PF的最大值为16
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式