2个回答
展开全部
解:∵cosC=cos(-C)=-cos(180°-C)=-cos(A+B)
cos2C=1-2sin^2(C)
∴cos(A-B)+cosC=1-cos2C可转换为cos(A-B)-cos(A+B)=2sin^2C
∵cos(A+B)=cosA·cosB-sinA·sinB
cos(A-B)=cosA·cosB+sinA·sinβB
所以cos(A-B)-cos(A+B)=2sin^2C即为sinAsinB=sin^2C
由正弦定理得,ab=c^2
同理(a+b)/a=sinB/(sinB-sinA),即(a+b)/a=b/(b-a)
∴b^2-a^2=ab
又∵ab=c^2
∴b^2=a^2+c^2
∴△ABC为RT三角形
cos2C=1-2sin^2(C)
∴cos(A-B)+cosC=1-cos2C可转换为cos(A-B)-cos(A+B)=2sin^2C
∵cos(A+B)=cosA·cosB-sinA·sinB
cos(A-B)=cosA·cosB+sinA·sinβB
所以cos(A-B)-cos(A+B)=2sin^2C即为sinAsinB=sin^2C
由正弦定理得,ab=c^2
同理(a+b)/a=sinB/(sinB-sinA),即(a+b)/a=b/(b-a)
∴b^2-a^2=ab
又∵ab=c^2
∴b^2=a^2+c^2
∴△ABC为RT三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询