设函数f(x)在【0,派】上连续,且∫f(x)dx =0,∫f(x)cosxdx =0 两个式子的积分上下限均为0到派

证明:在(0,派)内f(x)至少有两个零点详细点谢谢了... 证明:在(0,派)内f(x)至少有两个零点
详细点 谢谢了
展开
522597089
2012-02-14 · TA获得超过6786个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:798万
展开全部
证明
记g(x)=∫(0~x)f(x)dx由于f(x)在[0,π]上连续,可知g(x)在[0,π]上可导
易知g(0)=g(π)=0
∫(0~π)f(x)cosxdx=∫(0~π)g'(x)cosxdx=∫(0~π)cosxdg(x)
=g(x)cosx|(0,π)+∫(0~π)g(x)sinxdx=∫(0~π)g(x)sinxdx=0......(*)
若在(0,π)内恒有g(x)sinx>0,则∫(0~π)g(x)sinxdx>0与(*)矛盾
若在(0,π)内恒有g(x)sinx<0,则∫(0~π)g(x)sinxdx<0与(*)矛盾
则必存在一点θ∈(0,π)使得g(θ)sinθ=0,注意到这里sinθ>0有g(θ)=0
对g(x)分别在[0,θ],[θ,π]上运用罗尔定理
至少存在两点θ1∈(0,θ),θ2∈(θ,π)使得
g'(θ1)=g'(θ2)=0,又g'(x)=f(x)
即f(θ1)=f(θ2)=0,证毕.
神不可挡
2012-02-14
知道答主
回答量:3
采纳率:0%
帮助的人:4879
展开全部
很难啊。。慢慢证明吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式