海伦公式是怎样推导出来的?
1个回答
展开全部
海伦定理表达式为:S=√p(p-a)(p-b)(p-c)
海伦定理意义:海伦定理的提出为计算三角形和多边形的面积提供了一种新的方法和思路。当已知三角形的长度而不知道三角形的高度时,海伦公式可以更快速、更容易地计算出三角形的面积。例如,测量土地面积时,不必测量三角形的高度,而只需测两点间的距离,就可以方便地导出答案。
海伦定理运用在数学几何上。一般来讲仅用四边长无法表达某个四边形面积(某些特例除外),必须添加某些条件,比如角、对角线等。
扩展资料:
海伦定理的发展历史:
这个定理是由古希腊数学家阿基米德推导出来的,但它通常以古希腊数学家海伦的名字命名。这个公式被称为海伦公式,因为它首先出现在海伦的《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。
中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”。虽然它在形式上不同于海伦定理,但它完全等同于海伦定理。它填补了中国数学史上的一个空白,由此可以看出中国古代数学水平很高。
参考资料来源:百度百科-海伦公式
参考资料来源:百度百科-海伦
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询