2个回答
展开全部
解:由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)^2,将D,B坐标代入:
a(3-1)^2=m,a(0-1)^2=m-3,得:a=1,m=4。
∴抛物线的解析式为y=x^2-2x+1,B坐标(3,4),A(-1,0);
过点Q作QM⊥AC于点M,设点Q的坐标是(x,x^2-2x+1),
则PM=(x-1),QM= x^2-2x+1,MC=(3-x),
∴S(ABQP)=S(△ABC)-S(△PQM)-S(梯形BCMQ)
=1/2*4*4-1/2(x-1)( x^2-2x+1)-1/2(3-x)*( x^2-2x+1+4)
=-x^2+4x+1=-(x-2)^2+5,
所以当x=2时,四边形ABQP的面积最大为5。 去菁优网上查一下吧,有详细过程
解:
(1)由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
(2)∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2,
得:
解得
∴抛物线的解析式为y=x2-2x+1;
(3)过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM‖CE
∴△PQM∽△PEC
∴
即 ,得EC=2(x-1)
∵QN‖FC
∴△BQN∽△BFC
∴
即 ,得
又∵AC=4
∴FC(AC+EC)= [4+2(x-1)]= (2x+2)= ×2×(x+1)=8
即FC(AC+EC)为定值8.
望采纳,谢谢
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)^2,将D,B坐标代入:
a(3-1)^2=m,a(0-1)^2=m-3,得:a=1,m=4。
∴抛物线的解析式为y=x^2-2x+1,B坐标(3,4),A(-1,0);
过点Q作QM⊥AC于点M,设点Q的坐标是(x,x^2-2x+1),
则PM=(x-1),QM= x^2-2x+1,MC=(3-x),
∴S(ABQP)=S(△ABC)-S(△PQM)-S(梯形BCMQ)
=1/2*4*4-1/2(x-1)( x^2-2x+1)-1/2(3-x)*( x^2-2x+1+4)
=-x^2+4x+1=-(x-2)^2+5,
所以当x=2时,四边形ABQP的面积最大为5。 去菁优网上查一下吧,有详细过程
解:
(1)由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
(2)∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2,
得:
解得
∴抛物线的解析式为y=x2-2x+1;
(3)过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM‖CE
∴△PQM∽△PEC
∴
即 ,得EC=2(x-1)
∵QN‖FC
∴△BQN∽△BFC
∴
即 ,得
又∵AC=4
∴FC(AC+EC)= [4+2(x-1)]= (2x+2)= ×2×(x+1)=8
即FC(AC+EC)为定值8.
望采纳,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询