高中数学题 要解题过程.
2个回答
展开全部
1、证明:
(1)(sin2a-cos2a)^2 = 1-2sin2a*cos2a = 1-sin4a
(2)tan(a/2)-1/tan(a/2)=(1-cosa)/sina - (1+cosa)/sina = -2cosa/sina = -2/tana
(3)tan(x/2+p/4)+tan(x/2-p/4)
=[1-cos(x+p/2)]/sin(x+p/2) + [1-cos(x-p/2)]/sin(x-p/2)
=[1+sinx]/cosx + [1-sinx]/(-cosx)
= [1+sinx - 1+sinx] / cosx
= 2sinx / cosx
= 2tanx
(4)(1+sin2a)/(sina+cosa) =(sina+cosa)^2 / (sina+cosa) = sina + cosa
(5)(1-2sinacosa)/(cosa^2-sina^2)
=(cosa - sina)^2 / (cosa-sina)(cosa+sina)
= (cosa-sina)/(cosa+sina)
=(1-tana)/(1+tana)
(6)1+cos2a+2(sina)^2 = 1+2(cosa)^2-1+2(sina)^2=2(cosa)^2+2(sina)^2 = 2
(7)(1-cos2a) / (1+cos2a) = (1-1+2sina^2) / (1+2cosa^2-1) = 2sina^2 / 2cosa^2 =tana^2
(8)(1+sin2a-cos2a) / (1+sin2a+cos2a)
= (2sinacosa+2sina^2) / (2sinacosa+2cosa^2)
= 2sina(cosa+sina)/2cosa(sina+cosa)
= sina /cosa
= tana
(1)(sin2a-cos2a)^2 = 1-2sin2a*cos2a = 1-sin4a
(2)tan(a/2)-1/tan(a/2)=(1-cosa)/sina - (1+cosa)/sina = -2cosa/sina = -2/tana
(3)tan(x/2+p/4)+tan(x/2-p/4)
=[1-cos(x+p/2)]/sin(x+p/2) + [1-cos(x-p/2)]/sin(x-p/2)
=[1+sinx]/cosx + [1-sinx]/(-cosx)
= [1+sinx - 1+sinx] / cosx
= 2sinx / cosx
= 2tanx
(4)(1+sin2a)/(sina+cosa) =(sina+cosa)^2 / (sina+cosa) = sina + cosa
(5)(1-2sinacosa)/(cosa^2-sina^2)
=(cosa - sina)^2 / (cosa-sina)(cosa+sina)
= (cosa-sina)/(cosa+sina)
=(1-tana)/(1+tana)
(6)1+cos2a+2(sina)^2 = 1+2(cosa)^2-1+2(sina)^2=2(cosa)^2+2(sina)^2 = 2
(7)(1-cos2a) / (1+cos2a) = (1-1+2sina^2) / (1+2cosa^2-1) = 2sina^2 / 2cosa^2 =tana^2
(8)(1+sin2a-cos2a) / (1+sin2a+cos2a)
= (2sinacosa+2sina^2) / (2sinacosa+2cosa^2)
= 2sina(cosa+sina)/2cosa(sina+cosa)
= sina /cosa
= tana
展开全部
请给我这一方面的公式
追问
两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
追答
呵呵,我也不回
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询