先化简,再求值:(x-y分之一+x+y分之一)÷x的平方-y的平方分之x的平方y,其中x=根号3+1,y=根号3-1
2个回答
2012-02-19 · 知道合伙人教育行家
关注
展开全部
x=√3+1,y=√3-1
[1/(x-y)+1/(x+y)] ÷ x^2y/(x^2-y^2)
= (x+y+x-y)/[(x+y)(x-y) × (x+y)(x-y)/(x^2y)
= 2x/(x^2y)
= 2/(xy)
= 2/[(√3+1)(√3-1)]
= 2/(3-1)
= 1
[1/(x-y)+1/(x+y)] ÷ x^2y/(x^2-y^2)
= (x+y+x-y)/[(x+y)(x-y) × (x+y)(x-y)/(x^2y)
= 2x/(x^2y)
= 2/(xy)
= 2/[(√3+1)(√3-1)]
= 2/(3-1)
= 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询