设n>1,n属于正整数,证明(1+1/3)(1+1/5)(1+1/7)…(1+1/(2n—1)>√(2n+1)/2 (不用数学归纳法)

设n>1,n属于正整数,证明(1+1/3)(1+1/5)(1+1/7)…(1+1/(2n—1)>√(2n+1)/2用不等式的构造策略解题该如何?不用数学归纳法。(《解题》... 设n>1,n属于正整数,证明(1+1/3)(1+1/5)(1+1/7)…(1+1/(2n—1)>√(2n+1)/2用不等式的构造策略解题该如何?不用数学归纳法。
(《解题》P32T3)
展开
worldbl
2012-02-19 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3450万
展开全部
因为 4n²>4n²-1=(2n+1)(2n-1)
所以 2n>√[(2n+1)(2n-1)]
2n/(2n-1)>√(2n+1)/√(2n-1)
所以 (1+1/3)(1+1/5)(1+1/7)…[1+1/(2n—1)]
=(4/3)(6/5)...[2n/(2n-1)]
>(√5/√3)(√7/√5)...[√(2n+1)/√(2n-1)]
=√(2n+1)/√3
>√(2n+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式