
3个回答
展开全部
假设存在m,n
2n^2+2n=m^2+1,由于左边是偶数,因此m^2必为奇数,m=2k+1
2n(n+1)=(2k+1)^2=4k^2+4k+2=2(2k^2+2k+1)
n,n+1中必有一个是偶数,故2n(n+1)是4的倍数,但2k^2+2k+1是奇数
2(2k^2+2k+1)不是4的倍数,矛盾
2n^2+2n=m^2+1,由于左边是偶数,因此m^2必为奇数,m=2k+1
2n(n+1)=(2k+1)^2=4k^2+4k+2=2(2k^2+2k+1)
n,n+1中必有一个是偶数,故2n(n+1)是4的倍数,但2k^2+2k+1是奇数
2(2k^2+2k+1)不是4的倍数,矛盾
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询