5个回答
展开全部
(1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=DE,
∵四边形ABCD是正方形
∴CD=BC,
∴CE=BC,
∴△CBE为等腰三角形,且顶角∠ECB=90°-60°=30°
∴∠EBC=1/2 (180°-30°)=75°
∵AD∥BC
∴∠AEB=∠EBC=75°.
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=DE,
∵四边形ABCD是正方形
∴CD=BC,
∴CE=BC,
∴△CBE为等腰三角形,且顶角∠ECB=90°-60°=30°
∴∠EBC=1/2 (180°-30°)=75°
∵AD∥BC
∴∠AEB=∠EBC=75°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:由等边三角形ABC的性质,可知∠ABC=∠C=60°,AB=BC,又已知BM=CN,所以△ABM≌△BCN,有∠BAM=∠CBN,再根据三角形的外角等于与它不相邻的两内角之和,即∠BQM为定值.
(1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=BC
∴△CBE为等腰三角形,且顶角∠ECB=90°-60°=30°
∴∠EBC=1/2
(180°-30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
点评:本题考查了正方形、等边三角形、等腰三角形性质的综合运用,是涉及几何证明与计算的综合题,难度不大.
赞~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=BC
∴△CBE为等腰三角形,且顶角∠ECB=90°-60°=30°
∴∠EBC=1/2
(180°-30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
点评:本题考查了正方形、等边三角形、等腰三角形性质的综合运用,是涉及几何证明与计算的综合题,难度不大.
赞~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一问呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询