证明cos²(A+B)—sin²(A—B)=cos2Acos2B
1个回答
展开全部
左边=(cosAcosB-sinAsinB)²-(sinAcosB-cosAsinB)²
=cos²Acos²B + sin²Asin²B - 2sinAsinBcosAcosB - sin²Acos²B - cos²Asin²B + 2sinAsinBcosAcosB
=cos²Acos²B + sin²Asin²B - sin²Acos²B - cos²Asin²B
=cos²B(cos²A - sin²A) - sin²B(cos²A - sin²A)
=(cos²B-cos²B)(cos²A-sin²A)
=cos2Acos2B=右边
∴得证
=cos²Acos²B + sin²Asin²B - 2sinAsinBcosAcosB - sin²Acos²B - cos²Asin²B + 2sinAsinBcosAcosB
=cos²Acos²B + sin²Asin²B - sin²Acos²B - cos²Asin²B
=cos²B(cos²A - sin²A) - sin²B(cos²A - sin²A)
=(cos²B-cos²B)(cos²A-sin²A)
=cos2Acos2B=右边
∴得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询