请教一道高数的积分方程题

2yy''=1+y'²,y(1)=1,y'(1)=-1,求方程的特解... 2yy''=1+y'²,y(1)=1,y'(1)=-1,求方程的特解 展开
dennis_zyp
2012-02-24 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
设p=y'=dy/dx
则y"=dp/dx=dp/dy*dy/dx=pdp/dy
方程化为:2ypdp/dy=1+p^2
2pdp/(1+p^2)=dy/y
d(p^2+1)/(1+p^2)=dy/y
ln(1+p^2)=lny+c1
1+p^2=cy
p=±√(cy-1), 由p(1)=-1=-√(c-1), 得:c=2
因此dy/dx=-√(2y-1)
dy/√(2y-1)=dx
√(2y-1)=x+c
y=[(x+c)^2+1]/2
由y(1)=1=[(1+c)^2+1]/2 得:c=0
因此y=(x^2+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式