在三角形ABC中,已知.sinA=sinB+sinC/cosB+cosC,试判断三角形ABC的形状。

sinA=(sinB+sinC)/(cosB+cosC)sinAcosB+sinAcosC=sinB+sinC1/2[sin(A+B)+sin(A-B)]+1/2[sin... sinA=(sinB+sinC)/(cosB+cosC)
sinAcosB+sinAcosC=sinB+sinC
1/2[sin(A+B)+sin(A-B)]+1/2[sin(A+C)+sin(A-C)]=sinB+sinC
sin(A-B)+sin(A-C)=sinB+sinC
2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)
中sin(A-B)+sin(A-C)=sinB+sinC怎么转换成2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)的
速度,谢
展开
feidao2010
2012-02-26 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
这个用的是和差化积公式:
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
  sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
  cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
  cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
本题中用的是第一个公式
白小痴666
2012-03-02
知道答主
回答量:32
采纳率:0%
帮助的人:12.6万
展开全部
这里要引用“和差化积公式”
sinA+sinB=2sin((A+B)/2)*cos((A-B)/2)
答案:直角三角形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式