2个回答
展开全部
>> dsolve('(1-x)*D2y+x*Dy-y=0','x')
ans =
C2*x + C3*exp(x)
ans =
C2*x + C3*exp(x)
追问
是用Mathmatica吗?请问有推导过程么?
追答
是用matlab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-x)y''+xy'-y=0
(xy'-y)'=xy''
y''=(1/x) (xy'-y)'
[(1-x)/x](xy'-y)'+(xy'-y)=0
d(xy'-y)/(xy'-y)=xdx/(x-1)
ln|xy'-y|=x+ln|x-1|+lnC
(xy'-y)=C(x-1)e^x
xy'-y=C*(x-1)*e^x
xdy-ydx=C(x-1)e^xdx
d(y/x)=C(x-1)e^xdx/(x^2)
y/x=Ce^x/x +C1
y=Ce^x+C1x
∫(x-1)e^xdx/x^2=∫e^xdx/x-∫e^xdx/x^2
=∫de^x/x+∫e^xd(1/x)
=∫d(e^x/x)=(1/x)e^x+C1
(xy'-y)'=xy''
y''=(1/x) (xy'-y)'
[(1-x)/x](xy'-y)'+(xy'-y)=0
d(xy'-y)/(xy'-y)=xdx/(x-1)
ln|xy'-y|=x+ln|x-1|+lnC
(xy'-y)=C(x-1)e^x
xy'-y=C*(x-1)*e^x
xdy-ydx=C(x-1)e^xdx
d(y/x)=C(x-1)e^xdx/(x^2)
y/x=Ce^x/x +C1
y=Ce^x+C1x
∫(x-1)e^xdx/x^2=∫e^xdx/x-∫e^xdx/x^2
=∫de^x/x+∫e^xd(1/x)
=∫d(e^x/x)=(1/x)e^x+C1
追问
第一步到第二步不太对吧?
追答
(xy'-y)' =(xy')' -y'
=y'+xy''-y'
=xy''
第二步是单独成立的,以下解方程时必需使用的部份
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询