如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB, (1)求该抛物线的解析式.
(1)求该抛物线的解析式.
(2)求证:△OAB是等腰直角三角形.
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由. 展开
2011年张家界数学中考压轴题
由A(—4,0)、B(—2,2)在抛物线 y=ax2+bx图像上,得:16a-4b=0 和
4a-2b=2 解之得:a= -0.5 b= -2 ∴ 该函数解析式为:y= -0.5x2-2x
(2)过点B作BC垂直于X轴,垂足是点C.
易知:线段CO、CA、CB的长度均为2
∴ △ABC和△OBC为全等的等腰直角三角形
∴ AB=OB 且∠ABO=∠ABC+∠OBC= 90°
∴ △OAB是等腰直角三角形
(3) (4) 如图,将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′
其中点B′正好落在 轴上且B′A′∥ 轴.
又∵OB′和A′B′的长度为 2倍根号2
A′B′中点P的坐标为(负根号2,2倍根号2 ) ,显然不满足抛物线方程,
∴ 点P不在此抛物线上
(4)存在
过点O,作OM∥AB交抛物线于点M
易求出直线OM的解析式为:y=x
联立y=x和y= -0.5x2-2x 解之得 点M(—6,—6)
显然,点M(—6,—6)关于对称轴 的对称点M′(2,—6)也满足要求,
故满足条件的点M共有两个,坐标分别为(—6,—6)和(2,—6)
S四边形ABOM=S△ABO+S△AOM=0.5×4×2+ 0.5×4×6=16
由A(—4,0)、B(—2,2)在抛物线 y=ax2+bx图像上,得:16a-4b=0 和
4a-2b=2 解之得:a= -0.5 b= -2 ∴ 该函数解析式为:y= -0.5x2-2x
(2)过点B作BC垂直于X轴,垂足是点C.
易知:线段CO、CA、CB的长度均为2
∴ △ABC和△OBC为全等的等腰直角三角形
∴ AB=OB 且∠ABO=∠ABC+∠OBC= 90°
∴ △OAB是等腰直角三角形
(3) (4) 如图,将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′
其中点B′正好落在 轴上且B′A′∥ 轴.
又∵OB′和A′B′的长度为 2倍根号2
A′B′中点P的坐标为(负根号2,2倍根号2 ) ,显然不满足抛物线方程,
∴ 点P不在此抛物线上
(4)存在
过点O,作OM∥AB交抛物线于点M
易求出直线OM的解析式为:y=x
联立y=x和y= -0.5x2-2x 解之得 点M(—6,—6)
显然,点M(—6,—6)关于对称轴 的对称点M′(2,—6)也满足要求,
故满足条件的点M共有两个,坐标分别为(—6,—6)和(2,—6)
S四边形ABOM=S△ABO+S△AOM=0.5×4×2+ 0.5×4×6=16已赞同7| 评论(2)
由A(—4,0)、B(—2,2)在抛物线 y=ax2+bx图像上,得:16a-4b=0 和
4a-2b=2 解之得:a= -0.5 b= -2 ∴ 该函数解析式为:y= -0.5x2-2x
(2)过点B作BC垂直于X轴,垂足是点C.
易知:线段CO、CA、CB的长度均为2
∴ △ABC和△OBC为全等的等腰直角三角形
∴ AB=OB 且∠ABO=∠ABC+∠OBC= 90°
∴ △OAB是等腰直角三角形
(3) (4) 如图,将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′
其中点B′正好落在 轴上且B′A′∥ 轴.
又∵OB′和A′B′的长度为 2倍根号2
A′B′中点P的坐标为(负根号2,2倍根号2 ) ,显然不满足抛物线方程,
∴ 点P不在此抛物线上
(4)存在
过点O,作OM∥AB交抛物线于点M
易求出直线OM的解析式为:y=x
联立y=x和y= -0.5x2-2x 解之得 点M(—6,—6)
显然,点M(—6,—6)关于对称轴 的对称点M′(2,—6)也满足要求,
故满足条件的点M共有两个,坐标分别为(—6,—6)和(2,—6)
S四边形ABOM=S△ABO+S△AOM=0.5×4×2+ 0.5×4×6=16