展开全部
f(x)=ax方+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a
设x1<x2且 x1,x2∈(负无穷大,-b/2a]
f(x1)=a(x1+b/2a)^2+(4ac-b^2)/4a
f(x2)=a(x2+b/2a)^2+(4ac-b^2)/4a
f(x1)-f(x2)
=a(x1+b/2a-x2-b/2a)(x1+b/2a+x2+b/2a)
=a(x1-x2)(x1+x2+b/a)
∵x1<x2 ∴x1-x2<0
又∵x1,x2∈(负无穷大,-b/2a] x1+x2<-b/a ∴x1+x2+b/a<0
a<0
a(x1-x2)(x1+x2+b/a) <0
二次函数f(x)=ax方+bx+c(a<0)在区间(负无穷大,-b/2a]上是增函数
设x1<x2且 x1,x2∈(负无穷大,-b/2a]
f(x1)=a(x1+b/2a)^2+(4ac-b^2)/4a
f(x2)=a(x2+b/2a)^2+(4ac-b^2)/4a
f(x1)-f(x2)
=a(x1+b/2a-x2-b/2a)(x1+b/2a+x2+b/2a)
=a(x1-x2)(x1+x2+b/a)
∵x1<x2 ∴x1-x2<0
又∵x1,x2∈(负无穷大,-b/2a] x1+x2<-b/a ∴x1+x2+b/a<0
a<0
a(x1-x2)(x1+x2+b/a) <0
二次函数f(x)=ax方+bx+c(a<0)在区间(负无穷大,-b/2a]上是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询