求微分方程通解 y''-4y'+4y=2^2x+e^x+1

超级大超越
2012-03-03 · TA获得超过1万个赞
知道大有可为答主
回答量:6636
采纳率:64%
帮助的人:1508万
展开全部
特征方程为r²-4r+4=0,有一对重根r=2
其对应的齐次方程的通解就是Y=(C1+C2·x)·e^(2x)
C1,C2为任意常数。
令f(x)=2^2x+e^x+1.
令F(D)=4-4D+D²,则原微分方程的一个特解就是y*=[1/F(D)]f(x)
=[1/F(D)](2^2x+e^x+1)
=[1/F(D)]2^2x + [1/F(D)]e^x + 1/(4-4D+D²)
=[1/F(D)]e^((2ln2)x) + [1/F(D)]e^x + (1/4 +(1/4)D +…………)
=[1/F(2ln2)]e^((2ln2)x) + [1/F(1)]e^x + 1/4
=e^((2ln2)x)/(2ln2 -2)² + e^x/(1 -2)² + 1/4
=4^x /(2ln2 -2)² + e^x + 1/4
则原微分方程的通解为
y=Y+y*
=(C1+C2·x)·e^(2x) + 4^x /(2ln2 -2)² + e^x + 1/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式