化简[(X+1/X)^6-(X^6+1/X^6)-2]/[(X+1/X)^3+(X^3+1/X^3)]
2个回答
展开全部
[(x+1/x)^6-(x^6+1/x^6)-2]/[(x+1/x)^3+(x^3+1/x^3)]
=[(x+1/x)^6-(x^6+1/x^6+2)]/[(x+1/x)^3+(x^3+1/x^3)]
=[(x+1/x)^6-(x^3+1/x^3)^2]/[(x+1/x)^3+(x^3+1/x^3)]
=[(x+1/x)^3+(x^3+1/x^3)][(x+1/x)^3-(x^3+1/x^3)]/[(x+1/x)^3+(x^3+1/x^3)]
=(x+1/x)^3-(x^3+1/x^3)
=(x^3+1/x^3+3x+3/x)-(x^3+1/x^3)
=3x+3/x.
=[(x+1/x)^6-(x^6+1/x^6+2)]/[(x+1/x)^3+(x^3+1/x^3)]
=[(x+1/x)^6-(x^3+1/x^3)^2]/[(x+1/x)^3+(x^3+1/x^3)]
=[(x+1/x)^3+(x^3+1/x^3)][(x+1/x)^3-(x^3+1/x^3)]/[(x+1/x)^3+(x^3+1/x^3)]
=(x+1/x)^3-(x^3+1/x^3)
=(x^3+1/x^3+3x+3/x)-(x^3+1/x^3)
=3x+3/x.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询