
解方程1/(xx+x)+1/(xx+3x+2)+1/(xx+5x+6)+1/(xx+7x+12)+1/(xx+9x+20)=5/(xx+11x-7
展开全部
∵1/(x^2+x)=1/[x(x+1)]=1/x-1/(x+1),
1/(x^2+3x+2)=1/[(x+1)(x+2)]=1/(x+1)-1/(x+2),
1/(x^2+5x+6)=1/[(x+2)(x+3)]=1/(x+2)-1/(x+3),
1/(x^2+7x+12)=1/[(x+3)(x+4)]=1/(x+3)-1/(x+4),
1/(x^2+9x+20)=1/[(x+4)(x+5)]=1/(x+4)-1/(x+5)。
将上述5个式子相加,得:
1/(x^2+x)+1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)+1/(x^2+9x+20)
=1/x-1/(x+5)=(x+5-x)/[x(x+5)]=5/(x^2+5x),
∴原方程可变成:5/(x^2+5x)=5/(x^2+11x-7),∴x^2+5x=x^2+11x-7,
∴6x=7,∴x=7/6。
经检验,x=7/6满足原方程。
∴原方程的解是:x=7/6。
1/(x^2+3x+2)=1/[(x+1)(x+2)]=1/(x+1)-1/(x+2),
1/(x^2+5x+6)=1/[(x+2)(x+3)]=1/(x+2)-1/(x+3),
1/(x^2+7x+12)=1/[(x+3)(x+4)]=1/(x+3)-1/(x+4),
1/(x^2+9x+20)=1/[(x+4)(x+5)]=1/(x+4)-1/(x+5)。
将上述5个式子相加,得:
1/(x^2+x)+1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)+1/(x^2+9x+20)
=1/x-1/(x+5)=(x+5-x)/[x(x+5)]=5/(x^2+5x),
∴原方程可变成:5/(x^2+5x)=5/(x^2+11x-7),∴x^2+5x=x^2+11x-7,
∴6x=7,∴x=7/6。
经检验,x=7/6满足原方程。
∴原方程的解是:x=7/6。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询