1个回答
展开全部
= lim(√n+1-√n)·(√n+√n-1)/[(√n-√n-1)·(√n+√n-1)]
= lim(√n+1-√n)·(√n+√n-1)/[n-(n-1)]
= lim(√n+1-√n)·(√n+√n-1)
= lim(√n+1-√n)·(√n+1 + √n)·(√n+√n-1)/(√n+1 + √n)
= lim[(n+1)-n]·(√n+√n-1)/(√n+1 + √n)
= lim(√n+√n-1)/(√n+1 + √n)
= lim[1+√(1-1/n)]/[√(1+1/n) + 1]
= (1+1) / (1+1)
= 1
= lim(√n+1-√n)·(√n+√n-1)/[n-(n-1)]
= lim(√n+1-√n)·(√n+√n-1)
= lim(√n+1-√n)·(√n+1 + √n)·(√n+√n-1)/(√n+1 + √n)
= lim[(n+1)-n]·(√n+√n-1)/(√n+1 + √n)
= lim(√n+√n-1)/(√n+1 + √n)
= lim[1+√(1-1/n)]/[√(1+1/n) + 1]
= (1+1) / (1+1)
= 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询