
已知x〉0,y〉0,x+y=1,求证:(1/x2-1)*(1/y2-1)≥0
展开全部
(1/x2-1)*(1/y2-1)
=(1/x2y2) - (1/y2) - (1/x2) + 1
=(1/x2y2)-(x2/x2y2) - (y2/x2y2) + 1
=((1-x2-y2)/(x2y2)) + 1
=((1-x2-y2-2xy+2xy)/(x2y2) + 1
=(1-(x2+y2+2xy)+2xy)/(x2y2) + 1
=(1-(x+y)2+2xy)/x2y2 + 1
∵x+y=1
∴(x+y)2=1 得
(1-1+2xy)/x2y2 + 1
=2xy/x2y2 + 1
=2/xy +1
又∵x>0 , y>0
∴xy>0
∴2/xy>0
∴2/xy+1>0
这里容易看些:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询