【在线等解答】
X1,X2是f(x)=(a/3)x^3+(b/2)x^2-a^2x(a>0)两个极值点。且|X1|+|X2|=2①求a。②证:|b|≤4√3/9...
X1 , X2 是 f(x)=(a/3) x^3+(b/2)x^2-a^2 x (a>0)两个极值点。且 |X1|+|X2|=2
①求a。②证:|b|≤ 4√3/9 展开
①求a。②证:|b|≤ 4√3/9 展开
展开全部
解:
(1) f ' (x) = ax^2 + bx - a^2
X1 + X2 = - b/a
X1 * X2 = - a → | X1 | + | X2 | = | X1 - X2 | = √ ( X1 + X2 ) ^2 - 4*X1*X2 = 2
∴ ( - b/a )^2 - 4 (-a) = b^2 / a^2 + 4a = 4
∴ b^2 = 4 a^2 ( 1 - a ) ≥ 0
∴ 0 < a ≤ 1
(2) 设 b^2 = g (a) = 4a^2 - 4a^3
g ' (a) = 8a - 12a^2
令 g ' (a) > 0
则 x ∈ ( 0,2/3)
∴ 增区间( 0 , 2/3 ) 减区间( 2/3 , 1 )
g(a) max = g(2/3) = 16/27
∴ b^2 ≤ 16/27
∴ b ≤ 4/3√ 3 = 4√ 3 / 9
望采纳~~~~
(1) f ' (x) = ax^2 + bx - a^2
X1 + X2 = - b/a
X1 * X2 = - a → | X1 | + | X2 | = | X1 - X2 | = √ ( X1 + X2 ) ^2 - 4*X1*X2 = 2
∴ ( - b/a )^2 - 4 (-a) = b^2 / a^2 + 4a = 4
∴ b^2 = 4 a^2 ( 1 - a ) ≥ 0
∴ 0 < a ≤ 1
(2) 设 b^2 = g (a) = 4a^2 - 4a^3
g ' (a) = 8a - 12a^2
令 g ' (a) > 0
则 x ∈ ( 0,2/3)
∴ 增区间( 0 , 2/3 ) 减区间( 2/3 , 1 )
g(a) max = g(2/3) = 16/27
∴ b^2 ≤ 16/27
∴ b ≤ 4/3√ 3 = 4√ 3 / 9
望采纳~~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询