两道关于导数的题目
1,求y=3x^3/sinx-cosx的导数2,设y=1-√x/1+√x,求y'(4)要详细的求解过程,谢谢了!...
1,求y=3x^3/sinx-cosx的导数
2,设y=1-√x / 1+√x ,求y'(4)
要详细的求解过程,谢谢了! 展开
2,设y=1-√x / 1+√x ,求y'(4)
要详细的求解过程,谢谢了! 展开
2个回答
展开全部
(1)
y = 3x³/(sinx - cosx)
y' = 3 • [(sinx - cosx)(3x²) - (x³)(cosx + sinx)]/(sinx - cosx)²
= 3(3x²sinx - 3x²cosx - x³cosx - x³sinx)/(sinx - cosx)²
= 3x²(3sinx - 3cosx - xcosx - xsinx)/(sinx - cosx)²
(2)
y = (1 - √x)/(1 + √x)
y' = [(1 + √x)(-1/2√x) - (1 - √x)(1/2√x)]/(1 + √x)²
= [(1 + √x)(-1) - (1 - √x)]/[2√x(1 + √x)²]
= (- 1 - √x - 1 + √x)/[2√x(1 + √x)²]
= - 1/[√x(1 + √x)²]
y'|(4) = - 1/[√4(1 + √4)²] = -1/[(2)(3)²] = -1/18
y = 3x³/(sinx - cosx)
y' = 3 • [(sinx - cosx)(3x²) - (x³)(cosx + sinx)]/(sinx - cosx)²
= 3(3x²sinx - 3x²cosx - x³cosx - x³sinx)/(sinx - cosx)²
= 3x²(3sinx - 3cosx - xcosx - xsinx)/(sinx - cosx)²
(2)
y = (1 - √x)/(1 + √x)
y' = [(1 + √x)(-1/2√x) - (1 - √x)(1/2√x)]/(1 + √x)²
= [(1 + √x)(-1) - (1 - √x)]/[2√x(1 + √x)²]
= (- 1 - √x - 1 + √x)/[2√x(1 + √x)²]
= - 1/[√x(1 + √x)²]
y'|(4) = - 1/[√4(1 + √4)²] = -1/[(2)(3)²] = -1/18
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询