已知a-1的绝对值+b-2的绝对值=0求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
展开全部
∵a-1的绝对值+b-2的绝对值=0
∴a-1=0 b-2=0
a=1 b=2
∴1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
=1/2+1/2*3+1/3*4+1/4*5+......1/2005*2006
=1/1/2+1/2-1/3+1/3-1/4+.......-1/2005+1/2005-1/2006
=1-1/2006
=2005/2006
∴a-1=0 b-2=0
a=1 b=2
∴1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
=1/2+1/2*3+1/3*4+1/4*5+......1/2005*2006
=1/1/2+1/2-1/3+1/3-1/4+.......-1/2005+1/2005-1/2006
=1-1/2006
=2005/2006
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a=1,b=2
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
=1/2 +1/(2+3)+1/(3+4)…………1/(2005+2006)
=1-1/2+(1/2-1/3)+(1/3-1/4)……+(1/2005-1/2006)
=1-1/2006
=2005/2006
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
=1/2 +1/(2+3)+1/(3+4)…………1/(2005+2006)
=1-1/2+(1/2-1/3)+(1/3-1/4)……+(1/2005-1/2006)
=1-1/2006
=2005/2006
追问
没看明白,麻烦你详细一点,谢谢!
追答
恩
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+1/(a+3)(b+3)+...+1/(a+2004)(b+2004)
=1/2 + 1/(2*3)+ 1/(3*4)…………1/(2005*2006)
=1/2+ 1/6+ 1/12+……+ 1/(2005*2006)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)……+(1/2005-1/2006)
=(1+1/2-1/2+1/3-1/3+1/4……-1/2005+1/2005-1/2006
=1-1/2006
=2005/2006
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询