如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交与点F,DE等于二分之一CD。【1
】求证三角形ABF相似三角形CEB.【2】若三角形DEF的面积为2,求平行四边形ABCD的面积...
】求证三角形ABF相似三角形CEB.【2】若三角形DEF的面积为2,求平行四边形ABCD的面积
展开
1个回答
展开全部
1、因为 四边形ABCD是平行四边形
所以 AD//BC AB//CD
又因为 点E是CD的延长线
所以 AB//CE
所以 ∠AFB=∠EBC ∠ABE=∠E
所以 △ABF相似于△CEB
2、∵CD=2DE,∴CE=3DE.
∵ED/EC=FD/BC=1/3,∴BC=3FD,∴AF=2FD.
∵S(DEF)=2,∴S(BCE)=2*9=18,
∴S(BCDF)=S(BCE)-S(DEF)=18-2=16.
又∵S(ABF)=2*4=8.
因此S(ABCD)=16+8=24.
所以 AD//BC AB//CD
又因为 点E是CD的延长线
所以 AB//CE
所以 ∠AFB=∠EBC ∠ABE=∠E
所以 △ABF相似于△CEB
2、∵CD=2DE,∴CE=3DE.
∵ED/EC=FD/BC=1/3,∴BC=3FD,∴AF=2FD.
∵S(DEF)=2,∴S(BCE)=2*9=18,
∴S(BCDF)=S(BCE)-S(DEF)=18-2=16.
又∵S(ABF)=2*4=8.
因此S(ABCD)=16+8=24.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询