设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2

老von子
2014-01-01 · TA获得超过218个赞
知道答主
回答量:25
采纳率:0%
帮助的人:23.4万
展开全部
令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:
f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt
=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0
故这个关于x的二次函数f(x)的判别式应小于等于0,即:
△=(2∫b a 1dt)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)=4(b-a)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)≤0
即:(∫b a f(t)dt )(∫b a 1/f(t)dt)≥(b-a)^2
把t换成x即为要证明的结论

注:实际上这就是积分形式的柯西不等式
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式