下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值...
将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
展开
展开全部
(1)∵M为顶点(最低点),∴函数解析式为 y=(x-1)² - 4
∵S△PAB=5/4S△MAB 且这两个三角形是同底的,
∴面积之比即为高之比,即P点纵坐标为5
∴ 将y = 5代入函数解析式
得P为(-2,5)(4,5)
(2)抛物线与x轴的交点为 y = 0
(x-1)² - 4=0,x=-1或3,两交点为(-1,0)(3,0)
将图形翻折后得到的函数为分段函数
当x<-1或x>3时 y=(x-1)² - 4
当-1<x<3时,y= - (x-1)² + 4
函数图像变为:\/\/ 形,是关于直线x=1对称的图象,最左右两边可以向上无限延伸
当y=x+b与对称轴右边两支相交时只有两个交点,-3<x<1
当y=x+b与最左右两支相交而不与中间相交时也只有两个交点,
- (x-1)² + 4=x+b 有唯一的解 x² -x+b-3=0,△ = 1-4(b-3)=0,b=13/4
∴当b>13/4时也有两个交点
∴当b>13/4或-3<b<1时直线与抛物线有两个交点
∵S△PAB=5/4S△MAB 且这两个三角形是同底的,
∴面积之比即为高之比,即P点纵坐标为5
∴ 将y = 5代入函数解析式
得P为(-2,5)(4,5)
(2)抛物线与x轴的交点为 y = 0
(x-1)² - 4=0,x=-1或3,两交点为(-1,0)(3,0)
将图形翻折后得到的函数为分段函数
当x<-1或x>3时 y=(x-1)² - 4
当-1<x<3时,y= - (x-1)² + 4
函数图像变为:\/\/ 形,是关于直线x=1对称的图象,最左右两边可以向上无限延伸
当y=x+b与对称轴右边两支相交时只有两个交点,-3<x<1
当y=x+b与最左右两支相交而不与中间相交时也只有两个交点,
- (x-1)² + 4=x+b 有唯一的解 x² -x+b-3=0,△ = 1-4(b-3)=0,b=13/4
∴当b>13/4时也有两个交点
∴当b>13/4或-3<b<1时直线与抛物线有两个交点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询