求函数y=2x3-3x2-12x+5在【0,3】上的最大值、最小值 30
3个回答
展开全部
分析:
对函数y=2x3-3x2-12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可
解答:
解:由题意y'=6x2-6x-12
令y'>0,解得x>2或x<-1
故函数y=2x3-3x2-12x+5在(0,2)减,在(2,3)上增
又y(0)=5,y(2)=-15,y(3)=5
故函数y=2x3-3x2-12x+5在区间[0,3]上最大值与最小值分别是5,-15
对函数y=2x3-3x2-12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可
解答:
解:由题意y'=6x2-6x-12
令y'>0,解得x>2或x<-1
故函数y=2x3-3x2-12x+5在(0,2)减,在(2,3)上增
又y(0)=5,y(2)=-15,y(3)=5
故函数y=2x3-3x2-12x+5在区间[0,3]上最大值与最小值分别是5,-15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=2x³-3x²-12x+5,则:y'=6x²-6x-12=6(x-2)(x+1),则f(x)在[0,2]上递减,在[2,3]上递增,则最小值是f(2),最大值是f(0)和f(3)中较大的一个。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询