过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C,

过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C.若梯形ABCD的面积为12根号2,则P为多少?写下计算过程谢谢了!... 过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C.若梯形ABCD的面积为12根号2,则P为多少? 写下计算过程 谢谢了! 展开
飘渺的绿梦
2012-03-08 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1797万
展开全部
题目没有表达清楚啊!我估计题目是这样的:
过抛物线x^2=2py的焦点作斜率为1的直线与抛物线交于A,B两点。A、B在x轴上的正射影分别为D、C。若梯形ABCD的面积为12√2。则P为多少?

若是这样,则方法如下:
由抛物线方程x^2=2py,得抛物线的焦点坐标为(0,p/2),又AB过焦点,且斜率为1,
∴直线AB的方程为:y=x+p/2。
∴可令A、B的坐标分别为(m,m+p/2)、(n,n+p/2)。

联立:y=x+p/2、x^2=2py,消去y,得:x^2=2p(x+p/2)=2px+p^2,
∴x^2-2px-p^2=0。
显然,m、n是方程x^2-2px-p^2=0的两根,∴由韦达定理,有:m+n=2p、mn=-p^2。

由A(m,m+p/2)、B(n,n+p/2),得:
|AD|=|m+p/2|、|BC|=|n+p/2|、|CD|=|m-n|。
很明显,A、B同在x轴的上方或下方,∴A、B的纵坐标同为正数,或同为负数,
∴|AD|+|BD|=|m+p/2+n+p/2|=|2p+p/2+p/2|=3|p|。
∴梯形ABCD的面积
=(1/2)(|AD|+|BD|)|CD|=(1/2)×3|p||m-n|
=(3/2)|p|√[(m+n)^2-4mn]=(3/2)|p|√[(2p)^2-4(-p^2)]
=(3/2)|p|×2√2|p|=3√2p^2。
而梯形ABCD的面积=12√2,∴3√2p^2=12√2,∴p^2=4,∴p=2,或p=-2。

注:若原题不是我所猜测的那样,则请你补充说明。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式