已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点. (1)求证:B

已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面... 已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.
展开
 我来答
检皖静6L
2014-12-17 · TA获得超过629个赞
知道答主
回答量:48
采纳率:0%
帮助的人:30.9万
展开全部
试题分析:证明(1)连接AC1交A1C于点E,连接DE
因为四边形AA1C1C是矩形,知E为AC1的中点
又D是AB的中点,得到DE∥BC1,
从而可得BC1∥面CA1.
证明(2)由AC=BC,D是AB的中点,得AB⊥CD,
由AA1⊥面ABC,得AA1⊥CD,
从而CD⊥面AA1B1B,进一步得平面CA1D⊥平面AA1B1B.
(3)利用,可求得体积.
试题解析:证明(1)连接AC1交A1C于点E,连接DE
因为四边形AA1C1C是矩形,则E为AC1的中点
又D是AB的中点,DE∥BC1,
又DE面CA1D,BC1面CA1D,BC1∥面CA1 (4分)
证明(2)AC=BC,D是AB的中点,AB⊥CD,
又AA1⊥面ABC,CD面ABC,AA1⊥CD,
AA1∩AB=A,CD⊥面AA1B1B,CD面CA1D,
平面CA1D⊥平面AA1B1B (8分)

(3)解:,则(2)知CD⊥面ABB1B,所以高就是CD=,BD=1,BB1=,所以A1D=B1D=A1B1=2,, (12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式