设函数f(x)在(0,+∞)上具有二阶导数,且f″(x)>0,令un=f(n),则下列结论正确的是(  )A.

设函数f(x)在(0,+∞)上具有二阶导数,且f″(x)>0,令un=f(n),则下列结论正确的是()A.若u1>u2,则{un}必收敛B.若u1>u2,则{un}必发散... 设函数f(x)在(0,+∞)上具有二阶导数,且f″(x)>0,令un=f(n),则下列结论正确的是(  )A.若u1>u2,则{un}必收敛B.若u1>u2,则{un}必发散C.若u1<u2,则{un}必收敛D.若u1<u2,则{un}必发散 展开
 我来答
Faith丶1507
2014-10-09 · TA获得超过162个赞
知道答主
回答量:146
采纳率:66%
帮助的人:62.4万
展开全部
∵f″(x)>0
∴f(x)在(0,+∞)的图形是凹的
∴?x0∈(0,+∞),f(x)在(0,x0)单调递减,在(x0,+∞)单调递增(也有可能x0≤0)
∴(1)选项D:若u1<u2,即un=f(n)处于f(x)单调递增的区间,
此时,f(n)是无界的
∴un发散
∴选项D正确.
(2)选项A:若u1>u2
此时,不能判断un=f(n)是否有界,因而也就不能判断un是否收敛
例如:取f(x)=(x-3)2,满足题目条件f(1)>f(2),但f(n)=(n-3)2发散,所以排除A;
选项B:取f(x)=x-2,满足f(1)>f(2),但f(n)=n?2
1
n2
收敛,所以排除B;
(3)选项C:取f(x)=x2,满足f(1)<f(2),但f(n)=n2发散,所以排除D.
故选:D
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式