(2014?闵行区二模)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、O

(2014?闵行区二模)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别... (2014?闵行区二模)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由. 展开
 我来答
猴四刳4
推荐于2016-12-01 · TA获得超过143个赞
知道答主
回答量:134
采纳率:0%
帮助的人:60.2万
展开全部
解:(1)∵Rt△AOB≌Rt△COD,
∴AB=OD,OB=CD,
∴点A(1,2),
∴OD=AB=2,OB=CD=1,
∴C(2,1),
∵抛物线y=ax2+bx+c经过点O(0,0),
∴可得c=0,
∵抛物线y=ax2+bx+c经过点A,C,
a+b=2
4a+2b=1

解得
a=?
3
2
b=
7
2

∴抛物线解析式为y=-
3
2
x2+
7
2
x,
∴对称轴是直线x=
7
6
,顶点坐标为(
7
6
49
24
);
(2)存在这样的点P,使得四边形ABPM为等腰梯形,理由如下:
设点P的横坐标为t,
∵PN∥CD,
∴△OPN∽△OCD,
可得PN=
t
2
,∴P(t,
t
2
),
∵点M在抛物线上,
∴M(t,-
3
2
t2+
7
2
t),
过M点作MG⊥AB于G,过P点作PH⊥AB于H,
AG=yA-yM=2-(-
3
2
t2+
7
2
t)=
3
2
t2-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式