展开全部
先计算b^2-4ac是否大于等于0,
1.如果b^2-4ac>0 那么就有不相等的两个实根
2.如果b^2-4ac=0 那么就有两个相等的实根
3.如果b^2-4ac=0 那么就无解
前两种可以用公式法x=[-b±根号下(b^2-4ac)]/(2a)
参考资料:书
配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
1.如果b^2-4ac>0 那么就有不相等的两个实根
2.如果b^2-4ac=0 那么就有两个相等的实根
3.如果b^2-4ac=0 那么就无解
前两种可以用公式法x=[-b±根号下(b^2-4ac)]/(2a)
参考资料:书
配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
展开全部
先化成一元二次方程一般式 Ax^2+Bx+C=0
先判断是否B^2-4AC>=0成立
若成立 X1=(-B+根号下B^2-4AC)/2A; X2=(-B-根号下B^2-4AC)/2A
若B^2-4AC>=0不成立 则无解
先判断是否B^2-4AC>=0成立
若成立 X1=(-B+根号下B^2-4AC)/2A; X2=(-B-根号下B^2-4AC)/2A
若B^2-4AC>=0不成立 则无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你们书上不是有那公式吗!一般的求解和十字交叉法都行啊,但后者比较特殊又快!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求△,然后-b±√△/2a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询