(2013?黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的

(2013?黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两... (2013?黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由. 展开
 我来答
豆绚sF
2014-11-08 · 超过66用户采纳过TA的回答
知道答主
回答量:114
采纳率:0%
帮助的人:143万
展开全部
(1)在Rt△AOC中,∠CAB+∠ACO=90°,在Rt△ABC中,∠CAB+∠CBA=90°,
∴∠ACO=∠CBA,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴OC2=OA?OB,
∴OC=12,
∴C(0,12);

(2)在Rt△AOC和Rt△BOC中,
∵OA=9,OC=12,OB=16,
∴AC=15,BC=20,
∵AD平分∠CAB,
∵DE⊥AB,
∴∠ACD=∠AED=90°,
∵AD=AD,
∴△ACD≌△AED,
∴AE=AC=15,
∴OE=AE-OA=15-9=6,BE=10,
∵∠DBE=∠ABC,∠DEB=∠ACB=90°,
∴△BDE∽△BAC,
DE
AC
=
BE
BC

∴DE=
15
2

∴D(6,
15
2
),
设直线AD的解析式是y=kx+b,
∵过A(-9,0)和D点,代入得:
?9k+b=0
6k+b=
15
2

k=
1
2
,b=
9
2

直线AD的解析式是:y=
1
2
x+
9
2

(3)存在点M,使得C、B、N、M为顶点的四边形是正方形,
理由是:①
以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,
BQ=CQ=
1
2
BC=10,
∵∠BQF=∠BOC=90°,∠QBF=∠CBO,
∴△BQF∽△BOC,
BF
BC
=
BQ
OB

∵BQ=10,OB=16,BC=20,
∴BF=
25
2

∴OF=16-
25
2
=
7
2

即F(
7
2
,0),
∵OC=12,OB=16,Q为BC中点,
∴Q(8,6),
设直线QF的解析式是y=ax+c,
代入得:
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消