已知数列an满足 a1=1,an=2a(n-1)+2^(n+1)+1,证明an+1/2^n为等差数列,并求出该数列前n项的和

速度... 速度 展开
良驹绝影
2012-03-08 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
an=2a(n-1)+2^(n+1)+1
an+1=[2a(n-1)+2]+2^(n+1) 【两边同除以2^n】
[an+1]/(2^n)=[a(n-1)+1]/[2^(n-1)]+2
即:[an+1)/[2^n]-[a(n-1)+1]/[2^(n-1)]=2=常数,所以数列{[an+1]/[2^n]}是以(a1+1)/2=1为首项,以d=2为公差的等差数列,则:
[an+1]/[2^n]=2n-1
an=[(2n-1)×2^n]-1
求an的前n项和,方法:1、先分组,2、第一组求和采用错位法求和。
招凝莲0ie1dd
2012-03-08 · TA获得超过6154个赞
知道大有可为答主
回答量:1301
采纳率:100%
帮助的人:593万
展开全部

具体见图片

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式