6个回答
展开全部
方法一
证明:设AB、CD交于点P,连接OP.
假设AB与CD能互相平分,则CP=DP,AP=BP.
∵AB、CD是⊙O内非直径的两弦,
∴OP⊥AB,OP⊥CD.
这与“过一点有且只有一条直线与已知直线垂直”相矛盾,所以假设不成立.
所以AB与CD不能互相平分.
方法二
已知:在⊙O中弦AB,CD相交于点P,且AB,CD都不是⊙O的直径
求证:AB,CD不能互相平分
证明:假设AB,CD能互相平分
连接OP
∵AP=BP
∴OP⊥AB
同理OP⊥CD
因为这与过一点有且有一条直线与已知直线垂直相矛盾,所以假设错误,所以圆的两条不是直径的相交弦不能互相平分.
证明:设AB、CD交于点P,连接OP.
假设AB与CD能互相平分,则CP=DP,AP=BP.
∵AB、CD是⊙O内非直径的两弦,
∴OP⊥AB,OP⊥CD.
这与“过一点有且只有一条直线与已知直线垂直”相矛盾,所以假设不成立.
所以AB与CD不能互相平分.
方法二
已知:在⊙O中弦AB,CD相交于点P,且AB,CD都不是⊙O的直径
求证:AB,CD不能互相平分
证明:假设AB,CD能互相平分
连接OP
∵AP=BP
∴OP⊥AB
同理OP⊥CD
因为这与过一点有且有一条直线与已知直线垂直相矛盾,所以假设错误,所以圆的两条不是直径的相交弦不能互相平分.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询