在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点
在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,联结EF.(1)如图,当点D在线段CB上时,...
在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,联结EF.(1)如图,当点D在线段CB上时,①求证:△AEF≌△ADC;②联结BE,设线段CD=x,线段BE=y,求y关于x的函数解析式及定义域;(2)当∠DAB=15°时,求△ADE的面积.
展开
1个回答
展开全部
(1)①证明:在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=
AB=5,
∵点F是AB的中点,
∴AF=
AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
在△AEF和△ADC中,
,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴函数的解析式是y=
,定义域是0<x≤5
;
(2)①当点在线段CB上时,
由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,
△ADE的面积为
;
②当点在线段CB的延长线上时,
由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100
,
△ADE的面积为50
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=
1 |
2 |
∵点F是AB的中点,
∴AF=
1 |
2 |
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
在△AEF和△ADC中,
|
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴函数的解析式是y=
25+x2 |
3 |
(2)①当点在线段CB上时,
由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,
△ADE的面积为
25
| ||
2 |
②当点在线段CB的延长线上时,
由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100
3 |
△ADE的面积为50
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|